Evidence on the Formation of Singlet Oxygen in the Donor Side Photoinhibition of Photosystem II: EPR Spin-Trapping Study

نویسندگان

  • Deepak Kumar Yadav
  • Pavel Pospíšil
چکیده

When photosystem II (PSII) is exposed to excess light, singlet oxygen ((1)O(2)) formed by the interaction of molecular oxygen with triplet chlorophyll. Triplet chlorophyll is formed by the charge recombination of triplet radical pair (3)[P680(•+)Pheo(•-)] in the acceptor-side photoinhibition of PSII. Here, we provide evidence on the formation of (1)O(2) in the donor side photoinhibition of PSII. Light-induced (1)O(2) production in Tris-treated PSII membranes was studied by electron paramagnetic resonance (EPR) spin-trapping spectroscopy, as monitored by TEMPONE EPR signal. Light-induced formation of carbon-centered radicals (R(•)) was observed by POBN-R adduct EPR signal. Increased oxidation of organic molecules at high pH enhanced the formation of TEMPONE and POBN-R adduct EPR signals in Tris-treated PSII membranes. Interestingly, the scavenging of R(•) by propyl gallate significantly suppressed (1)O(2). Based on our results, it is concluded that (1)O(2) formation correlates with R(•) formation on the donor side of PSII due to oxidation of organic molecules (lipids and proteins) by long-lived P680(•+)/TyrZ(•). It is proposed here that the Russell mechanism for the recombination of two peroxyl radicals formed by the interaction of R(•) with molecular oxygen is a plausible mechanism for (1)O(2) formation in the donor side photoinhibition of PSII.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quality Control of Photosystem II: Lipid Peroxidation Accelerates Photoinhibition under Excessive Illumination

Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1) s(-1)) for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. ...

متن کامل

Hydroxyl radical generation by photosystem II.

The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absen...

متن کامل

Short flashes and continuous light have similar photoinhibitory efficiency in intact leaves

Lincomycin-treated pumpkin leaves were illuminated with either continuous light or saturating single-turnover xenon flashes to study the dependence of photoinactivation of photosystem II (PSII) on the mode of delivery of light. The flash energy and the time interval between the flashes were varied between the experiments, and photoinactivation was measured with oxygen evolution and the ratio of...

متن کامل

Copper(II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy.

EPR spectroscopy was applied to investigate the inhibition of electron transport in photosystem II by Cu2+ ions. Our results show that Cu2+ has inhibitory effects on both the donor and the acceptor side of photosystem II. In the presence of Cu2+, neither EPR signal IIvery fast nor signal IIfast, which both reflect oxidation of tyrosinez, could be induced by illumination. This shows that Cu2+ in...

متن کامل

Degradation pattern of photosystem II reaction center protein D1 in intact leaves. The major photoinhibition-induced cleavage site in D1 polypeptide is located amino terminally of the DE loop.

Photoinhibition-induced degradation of the D1 protein of the photosystem II reaction center was studied in intact pumpkin (Cucurbita pepo L.) leaves. Photoinhibition was observed to cause the cleavage of the D1 protein at two distinct sites. The main cleavage generated an 18-kD N-terminal and a 20-kD C-terminal degradation fragment of the D1 protein. this cleavage site was mapped to be located ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012